Лекция №1 
Введение в топографию. Форма и размеры Земли 
Предмет и задачи топографии и геодезии
Топография (от греч. topos – место, местность и grapho – пишу), научно-техническая дисциплина, изучающая земную поверхность и размещенные на ней объекты в геометрическом отношении, с целью изображения их на топографических картах, планах и профилях. Главной задачей топографии является – создание топографических карт и планов. Основной метод изучения земной поверхности – топографическая съемка.
Топографическая съемка – это комплекс (совокупность) полевых измерений на местности и камеральных работ для создания топографических карт земной поверхности в заданном масштабе. Термин «топография» часто принимают эквивалентным термину «геодезия», что в переводе с греческого означает землеразделение (geodaisia, ge – земля и daizo – делю на части, разделяю). С современной точки зрения, геодезия является наукой о методах изучения формы и размеров Земли, изображения ее поверхности на картах, а также о методах специальных измерений необходимых для решения инженерных, экономических и других задач.
В процессе своего развития геодезия разделилась на ряд связанных между собой самостоятельных научных дисциплин – высшую геодезию, топографию, космическую геодезию, фототопографию и инженерную геодезию. К задачам высшей геодезии относятся определение фигуры и размеров Земли, изучение гравитационного поля Земли, определение на Земле взаимного положения точек, составляющих государственную геодезическую сеть (ГГС), необходимую для изучения земной поверхности и точного ее картографирования на плоскости с учетом возникающих при этом искажений.  В 1960-х гг. начал интенсивно развиваться новый раздел высшей геодезии – космическая (спутниковая) геодезия. Задачами данной дисциплины являются исследование основных параметров и внешнего гравитационного поля Земли и других планет Солнечной системы, а также определение координат пунктов земной поверхности в геоцентрической системе координат. Фототопография (аэрофототопография) занимается изучением методов и средств создания топографических карт и планов по фотоснимкам поверхности Земли. Аэрофототопография тесно связана с фотограмметрией. Фотограмметрия – это научная и инженерно-техническая дисциплина, занимающаяся определением формы, размеров и положения различных объектов местности путем измерения их изображения на фотоснимках.  Инженерная геодезия, имеющая прикладное значение, представляет комплекс геодезических работ, выполняемых при изысканиях, строительстве и эксплуатации различных сооружений, а также при монтаже оборудования, при наблюдениях за вертикальными и горизонтальными смещениями инженерных сооружений.  В своей теории и практическом применении топография использует достижения целого ряда наук: математики, физики, электроники и др. Большое значение топография имеет для изучения географических дисциплин картографии, геоморфологии, почвоведения, геологии, ландшафтоведения и др.  В задачу картографии входят вопросы теории и способов изображения на плоскости частей земной поверхности (отдельных государств, материков, земного шара), а также разработка методов и процессов создания и использования различных карт.  Значение топографии для науки и практики трудно переоценить. Особенно велика роль топографии при картографировании природной среды. Описания местности не могут заменить топографических карт и планов, на которых наглядно передаются все подробности местности. Топографические карты являются необходимыми при проведении полевых экспедиционных работ и представляются незаменимыми при выполнении картометрических исследований. Созданные топографические карты являются основным материалом для составления общегеографических карт.  Большая роль принадлежит топографии и геодезии в народном хозяйстве. Геодезические измерения предшествуют многим основным видам деятельности в развитии народного хозяйства страны. Геодезические измерения производятся на поверхности Земли и в ее недрах, в приземных слоях атмосферы, в океанах и морях. Геодезические изыскания выполняются на стадии проектирования, строительства и реконструкции населенных пунктов, железных и шоссейных дорог, тоннелей, мостов, магистральных нефте- и газопроводов и других объектов, а также для наблюдений за сдвигом и осадкой крупных сооружений.  Огромное значение геодезические работы имеют в сельском хозяйстве, с которым геодезия связана с древних времен. Проведение землеустроительных работ, направленных на рациональное использование земельных ресурсов, учет сельскохозяйственных земель и их качества, строительство гидромелиоративных и гидротехнических сооружений – все это тесно связано с геодезическими измерениями. Геологические изыскания начинаются и заканчиваются с использованием геодезических материалов и измерений. Строительство метро, шахт и карьеров невозможно без проведения геодезических работ, которые выполняют горные геодезисты – маркшейдеры. Особая роль принадлежит геодезии в вопросах обороноспособности государства. Топографические карты используются для изучения местности, при разработке военных операций и отображения на них боевой обстановки.
Краткий очерк развития топографии и геодезии
Истоки зарождения геодезии проследить исторически трудно. Вероятно, они относятся к тому времени, когда люди начали пользоваться землей для выращивания сельскохозяйственных культур. Поэтому возникла необходимость в делении земли, установлении площади ее отдельных участков. Позже методы геодезии потребовались для строительства оросительных и осушительных систем, разного рода инженерных сооружений. Считается, что возникновение геодезии связано с деятельностью человека в плодородных долинах рек Нила, Тигра и Евфрата. В Египте сохранились древнейшие инженерные сооружения, строительство которых было невозможно без хорошо разработанных геодезических методов измерений. В 6 тысячелетии до н. э. был построен канал, соединяющий р. Нил с Красным морем. В 5 тысячелетии до н. э. проводились большие ирригационные работы на р. Нил и мероприятия по осушению болот и регулированию водных ресурсов. В это же время в Египте были построены грандиозные сооружения (пирамида Хуву с квадратным основанием, сторона которого равна 227,5 м и высотой 137,2 м, а также пирамида Хофры и др.). Возведение подобных сооружений несомненно было связано с геодезическими работами. Однако геодезия, как наука, с разработкой соответствующих теоретических обоснований и методов оформилась несколько позже в Древней Греции и получила дальнейшее развитие в Древнем Риме. В VI в. до н. э. греческий ученый Пифагор высказал предположение о шарообразности Земли. Доказательства этой гипотезы привел в своих сочинениях Аристотель (384–322 гг. до н. э.). Он же ввел термин «геодезия» и относил эту науку к отрасли знаний связанной с астрономией и географией. Выдающийся астроном и географ, глава Александрийской библиотеки Эратосфен (276–194 гг. до н. э.) в своем труде «Географика» подробно рассмотрел вопрос о фигуре Земли, привел данные о размерах и форме ее обитаемой части – ойкумены, и показал последнюю на карте. Ему же принадлежит и наиболее близкое к действительности определение длины земного меридиана. 
 Развитие современных методов при выполнении геодезических работ относится к XVII в. Большим шагом вперед явилось разработка голландским ученым В. Снеллиусом метода триангуляции, благодаря которому стало возможным проводить на земной поверхности линейные измерения огромной протяженности, что позволило определять длины дуг параллелей и меридианов Земли. Во второй половине XVII в. появились первые геодезические приборы с оптической трубой – нивелиры. Теодолит с оптической трубой был изобретен лишь в конце XVIII в. английским механиком Рамсденом.  До конца XVII в. при определении размеров Земли исходным считалось, что Земля – шар. Ньютон (1643–1727) на основе открытого им закона всемирного тяготения теоретически обосновал неизбежность сплюснутости Земли у полюсов, если она когда-то была в огненно-жидком состоянии. Для проверки этой теории французская академия наук произвела геодезические измерения в Перу в 1735–1742 гг. по дуге пересекающей экватор и в 1736–1737 гг. в Лапландии на широте около 66º. Эти исследования подтвердили теорию Ньютона.  В конце XVIII в. французские ученые Ж. Деламбр и П. Мешен измерили дугу меридиана от Барселоны до Дюнкерка. На основе этих измерений были получены одни из первых точных данных о размерах земного эллипсоида и принята мера длинные линий – метр, как одна десятимиллионная часть четверти дуги Парижского меридиана. Большой вклад в развитие топографии и геодезии внесли немецкие ученые К. Гаусс (теория ошибок измерений, общая теория изображения сферической поверхности на плоскости с сохранением равноугольности) и Ф. Бессель (определение параметров земного эллипсоида). В России геодезия и топография получили широкое развитие при Петре I. В 1701 г. в Москве была построена первая в России школа математических и навигационных наук, в задачу которой входила подготовка навигаторов и геодезистов. В 1715 г. в Санкт-Петербурге была открыта морская академия с классом геодезии. В 1721 г. была разработана первая в России Инструкция по выполнению топографических съемок, на основе которой были составлены карты 164 уездов Европейской части России и 26 уездов Сибири. Большим значением для развития геодезии было открытие в 1739 г. Географического департамента. Вскоре были изданы первые учебники по геодезии «Практическая геометрия» С. Назарова и «Первые основания геодезии» С. К. Котельникова. В 1779 г. в Москве была основана Межевая школа, впоследствии – Межевый институт – высшее учебное заведение по подготовке геодезистов. К концу XVIII в. на территории России были определены координаты 67 астрономических пунктов. В 1797 г. было создано Депо карт, преобразованное в 1812 г. в Военно-топографическое депо, а затем в 1822 г. – в Корпус военных топографов. Наряду с Корпусом военных топографов геодезические работы выполняли Переселенческое управление, Межевое ведомство, Главное гидрографическое управление, Горное ведомство, Министерство путей сообщения, Русское географическое общество.
 Геодезические работы по определению формы и размеров Земли в России были начаты в 1816 г. геодезистами академиком Петербургской Академии наук, директором Пулковской обсерватории В. Я. Струве (1793–1864) и почетным членом Петербургской Академии наук, генералом К. И. Теннером (1783–1860). Градусное измерение дуги меридиана протяженностью 25º 20' от устья р. Дунай до Ледовитого океана (г. Фугленс, Норвегия).
 Большой вклад в развитие геодезии в России в XIX в. внес профессор А. П. Болотов, который в 1845 г. издал учебник «Курс высшей и низшей геодезии». Развитию геодезической теории и практики в то время содействовали научные труды ученых-геодезистов А. А. Тилло, В. В. Витковского, Ф. А. Слудского, А. Н. Савича, Д. Д. Гедеонова и др.




ЛЕКЦИЯ №1   ФОРМА И РАЗМЕРЫ ЗЕМЛИ

1. Земной эллипсоид
Известно, что Земля шарообразна и по форме близка к сфероиду — фигуре, которую она приняла бы под влиянием только сил взаимного тяготения и центробежной силы вращения вокруг полярной оси. Из-за неравномерного распределения масс Земля имеет обширные, хотя и довольно пологие, выпуклости и вогнутости.
 Фигуру Земли можно представить, вообразив поверхность, в каждой точке которой сила тяжести направлена по нормали к ней, т.е. по отвесной линии. Такую поверхность называют уровенной. Сложную фигуру нашей планеты, ограниченную уровенной поверхностью, проходящей через точку, закрепленную на высоте среднего уровня моря и являющуюся началом отсчета высот, называют геоидом. Иначе говоря, геоид представляет фигуру Земли, сглаженную до уровня Мирового океана. Благодаря использованию искусственных спутников и наземных измерений геоид достаточно изучен. При картографировании сложную фигуру геоида заменяют математически более простой — эллипсоидом вращения — геометрическим телом, которое образуется при вращении эллипса вокруг его малой оси (рис. 1). Наиболее известные эллипсоиды представлены в табл. 1. В нашей стране в 1940 г. расчет эллипсоида был выполнен выдающимся ученым Ф. Н. Красовским   (1878—1948) и его учеником А. А. Изотовым (1907—1988). Эллипсоид Красовского был утвержден в СССР для    геодезических и картографических работ, его используют в России и в настоящее время.
Предмет и задачи топографии и геодезии

Топография (от греч. topos – место, местность и grapho – пишу), научно-техническая дисциплина, изучающая земную поверхность и размещенные на ней объекты в геометрическом отношении, с целью изображения их на топографических картах, планах и профилях. Главной задачей топографии является – создание топографических карт и планов. Основной метод изучения земной поверхности – топографическая съемка.
Топографическая съемка – это комплекс (совокупность) полевых измерений на местности и камеральных работ для создания топографических карт земной поверхности в заданном масштабе. Термин «топография» часто принимают эквивалентным термину «геодезия», что в переводе с греческого означает землеразделение (geodaisia, ge – земля и daizo – делю на части, разделяю). С современной точки зрения, геодезия является наукой о методах изучения формы и размеров Земли, изображения ее поверхности на картах, а также о методах специальных измерений необходимых для решения инженерных, экономических и других задач.
В процессе своего развития геодезия разделилась на ряд связанных между собой самостоятельных научных дисциплин – высшую геодезию, топографию, космическую геодезию, фототопографию и инженерную геодезию. К задачам высшей геодезии относятся определение фигуры и размеров Земли, изучение гравитационного поля Земли, определение на Земле взаимного положения точек, составляющих государственную геодезическую сеть (ГГС), необходимую для изучения земной поверхности и точного ее картографирования на плоскости с учетом возникающих при этом искажений.  В 1960-х гг. начал интенсивно развиваться новый раздел высшей геодезии – космическая (спутниковая) геодезия. Задачами данной дисциплины являются исследование основных параметров и внешнего гравитационного поля Земли и других планет Солнечной системы, а также определение координат пунктов земной поверхности в геоцентрической системе координат. Фототопография (аэрофототопография) занимается изучением методов и средств создания топографических карт и планов по фотоснимкам поверхности Земли. Аэрофототопография тесно связана с фотограмметрией. Фотограмметрия – это научная и инженерно-техническая дисциплина, занимающаяся определением формы, размеров и положения различных объектов местности путем измерения их изображения на фотоснимках.  Инженерная геодезия, имеющая прикладное значение, представляет комплекс геодезических работ, выполняемых при изысканиях, строительстве и эксплуатации различных сооружений, а также при монтаже оборудования, при наблюдениях за вертикальными и горизонтальными смещениями инженерных сооружений.  В своей теории и практическом применении топография использует достижения целого ряда наук: математики, физики, электроники и др. Большое значение топография имеет для изучения географических дисциплин картографии, геоморфологии, почвоведения, геологии, ландшафтоведения и др.  В задачу картографии входят вопросы теории и способов изображения на плоскости частей земной поверхности (отдельных государств, материков, земного шара), а также разработка методов и процессов создания и использования различных карт.  Значение топографии для науки и практики трудно переоценить. Особенно велика роль топографии при картографировании природной среды. Описания местности не могут заменить топографических карт и планов, на которых наглядно передаются все подробности местности. Топографические карты являются необходимыми при проведении полевых экспедиционных работ и представляются незаменимыми при выполнении картометрических исследований. Созданные топографические карты являются основным материалом для составления общегеографических карт.  Большая роль принадлежит топографии и геодезии в народном хозяйстве. Геодезические измерения предшествуют многим основным видам деятельности в развитии народного хозяйства страны. Геодезические измерения производятся на поверхности Земли и в ее недрах, в приземных слоях атмосферы, в океанах и морях. Геодезические изыскания выполняются на стадии проектирования, строительства и реконструкции населенных пунктов, железных и шоссейных дорог, тоннелей, мостов, магистральных нефте- и газопроводов и других объектов, а также для наблюдений за сдвигом и осадкой крупных сооружений.  Огромное значение геодезические работы имеют в сельском хозяйстве, с которым геодезия связана с древних времен. Проведение землеустроительных работ, направленных на рациональное использование земельных ресурсов, учет сельскохозяйственных земель и их качества, строительство гидромелиоративных и гидротехнических сооружений – все это тесно связано с геодезическими измерениями. Геологические изыскания начинаются и заканчиваются с использованием геодезических материалов и измерений. Строительство метро, шахт и карьеров невозможно без проведения геодезических работ, которые выполняют горные геодезисты – маркшейдеры. Особая роль принадлежит геодезии в вопросах обороноспособности государства. Топографические карты используются для изучения местности, при разработке военных операций и отображения на них боевой обстановки.
Краткий очерк развития топографии и геодезии
Истоки зарождения геодезии проследить исторически трудно. Вероятно, они относятся к тому времени, когда люди начали пользоваться землей для выращивания сельскохозяйственных культур. Поэтому возникла необходимость в делении земли, установлении площади ее отдельных участков. Позже методы геодезии потребовались для строительства оросительных и осушительных систем, разного рода инженерных сооружений. Считается, что возникновение геодезии связано с деятельностью человека в плодородных долинах рек Нила, Тигра и Евфрата. В Египте сохранились древнейшие инженерные сооружения, строительство которых было невозможно без хорошо разработанных геодезических методов измерений. В 6 тысячелетии до н. э. был построен канал, соединяющий р. Нил с Красным морем. В 5 тысячелетии до н. э. проводились большие ирригационные работы на р. Нил и мероприятия по осушению болот и регулированию водных ресурсов. В это же время в Египте были построены грандиозные сооружения (пирамида Хуву с квадратным основанием, сторона которого равна 227,5 м и высотой 137,2 м, а также пирамида Хофры и др.). Возведение подобных сооружений несомненно было связано с геодезическими работами. Однако геодезия, как наука, с разработкой соответствующих теоретических обоснований и методов оформилась несколько позже в Древней Греции и получила дальнейшее развитие в Древнем Риме. В VI в. до н. э. греческий ученый Пифагор высказал предположение о шарообразности Земли. Доказательства этой гипотезы привел в своих сочинениях Аристотель (384–322 гг. до н. э.). Он же ввел термин «геодезия» и относил эту науку к отрасли знаний связанной с астрономией и географией. Выдающийся астроном и географ, глава Александрийской библиотеки Эратосфен (276–194 гг. до н. э.) в своем труде «Географика» подробно рассмотрел вопрос о фигуре Земли, привел данные о размерах и форме ее обитаемой части – ойкумены, и показал последнюю на карте. Ему же принадлежит и наиболее близкое к действительности определение длины земного меридиана. 
 Развитие современных методов при выполнении геодезических работ относится к XVII в. Большим шагом вперед явилось разработка голландским ученым В. Снеллиусом метода триангуляции, благодаря которому стало возможным проводить на земной поверхности линейные измерения огромной протяженности, что позволило определять длины дуг параллелей и меридианов Земли. Во второй половине XVII в. появились первые геодезические приборы с оптической трубой – нивелиры. Теодолит с оптической трубой был изобретен лишь в конце XVIII в. английским механиком Рамсденом.  До конца XVII в. при определении размеров Земли исходным считалось, что Земля – шар. Ньютон (1643–1727) на основе открытого им закона всемирного тяготения теоретически обосновал неизбежность сплюснутости Земли у полюсов, если она когда-то была в огненно-жидком состоянии. Для проверки этой теории французская академия наук произвела геодезические измерения в Перу в 1735–1742 гг. по дуге пересекающей экватор и в 1736–1737 гг. в Лапландии на широте около 66º. Эти исследования подтвердили теорию Ньютона.  В конце XVIII в. французские ученые Ж. Деламбр и П. Мешен измерили дугу меридиана от Барселоны до Дюнкерка. На основе этих измерений были получены одни из первых точных данных о размерах земного эллипсоида и принята мера длинные линий – метр, как одна десятимиллионная часть четверти дуги Парижского меридиана. Большой вклад в развитие топографии и геодезии внесли немецкие ученые К. Гаусс (теория ошибок измерений, общая теория изображения сферической поверхности на плоскости с сохранением равноугольности) и Ф. Бессель (определение параметров земного эллипсоида). В России геодезия и топография получили широкое развитие при Петре I. В 1701 г. в Москве была построена первая в России школа математических и навигационных наук, в задачу которой входила подготовка навигаторов и геодезистов. В 1715 г. в Санкт-Петербурге была открыта морская академия с классом геодезии. В 1721 г. была разработана первая в России Инструкция по выполнению топографических съемок, на основе которой были составлены карты 164 уездов Европейской части России и 26 уездов Сибири. Большим значением для развития геодезии было открытие в 1739 г. Географического департамента. Вскоре были изданы первые учебники по геодезии «Практическая геометрия» С. Назарова и «Первые основания геодезии» С. К. Котельникова. В 1779 г. в Москве была основана Межевая школа, впоследствии – Межевый институт – высшее учебное заведение по подготовке геодезистов. К концу XVIII в. на территории России были определены координаты 67 астрономических пунктов. В 1797 г. было создано Депо карт, преобразованное в 1812 г. в Военно-топографическое депо, а затем в 1822 г. – в Корпус военных топографов. Наряду с Корпусом военных топографов геодезические работы выполняли Переселенческое управление, Межевое ведомство, Главное гидрографическое управление, Горное ведомство, Министерство путей сообщения, Русское географическое общество.
 Геодезические работы по определению формы и размеров Земли в России были начаты в 1816 г. геодезистами академиком Петербургской Академии наук, директором Пулковской обсерватории В. Я. Струве (1793–1864) и почетным членом Петербургской Академии наук, генералом К. И. Теннером (1783–1860). Градусное измерение дуги меридиана протяженностью 25º 20' от устья р. Дунай до Ледовитого океана (г. Фугленс, Норвегия).
 Большой вклад в развитие геодезии в России в XIX в. внес профессор А. П. Болотов, который в 1845 г. издал учебник «Курс высшей и низшей геодезии». Развитию геодезической теории и практики в то время содействовали научные труды ученых-геодезистов А. А. Тилло, В. В. Витковского, Ф. А. Слудского, А. Н. Савича, Д. Д. Гедеонова и др.




ЛЕКЦИЯ №1   ФОРМА И РАЗМЕРЫ ЗЕМЛИ

1. Земной эллипсоид
Известно, что Земля шарообразна и по форме близка к сфероиду — фигуре, которую она приняла бы под влиянием только сил взаимного тяготения и центробежной силы вращения вокруг полярной оси. Из-за неравномерного распределения масс Земля имеет обширные, хотя и довольно пологие, выпуклости и вогнутости.
 Фигуру Земли можно представить, вообразив поверхность, в каждой точке которой сила тяжести направлена по нормали к ней, т.е. по отвесной линии. Такую поверхность называют уровенной. Сложную фигуру нашей планеты, ограниченную уровенной поверхностью, проходящей через точку, закрепленную на высоте среднего уровня моря и являющуюся началом отсчета высот, называют геоидом. Иначе говоря, геоид представляет фигуру Земли, сглаженную до уровня Мирового океана. Благодаря использованию искусственных спутников и наземных измерений геоид достаточно изучен. При картографировании сложную фигуру геоида заменяют математически более простой — эллипсоидом вращения — геометрическим телом, которое образуется при вращении эллипса вокруг его малой оси (рис. 1). Наиболее известные эллипсоиды представлены в табл. 1. В нашей стране в 1940 г. расчет эллипсоида был выполнен выдающимся ученым Ф. Н. Красовским   (1878—1948) и его учеником А. А. Изотовым (1907—1988). Эллипсоид Красовского был утвержден в СССР для    геодезических и картографических работ, его используют в России и в настоящее время.

Рис. 1. Эллипсоид вращения (В, L — широта и долгота точки Q;
L0начальный меридиан)

 По табл. 1 нетрудно проследить, как со временем повышалась точность определения большой полуоси и сжатия земного эллипсоида.
Таблица 1 Основные земные эллипсоиды и их параметры

Эллипсоид
Годы
Большая полуось а (м)
Сжатие а
Деламбра
1800
6 375 653
1/334
Вальбека
1819
6 376 896
1/303


Эйри
1830
6 377 563,396
1/299,3249646
нереста
1830
6 377 276,345
1/300,8017
Бесселя
1841
6 377 397
1/299,15
Кларка
1866
6 378 206
1/294,98
Кларка
1880
6 378 249
1/293,46
Хейфорда
1909
6 378 388
1/297
Красовского
1940
6 378 245
1/298,3
Австралийский
1965
6 378 160      _j
1/298,25
GRS-67
1967
6 378 160
1/298.247167247
WGS-72
1972
6 378 135
1/298,26
GRS-80
1979
6 378 137
1/298,257222101
WGS-84
1984
6 378 137
1/298,257223563
ПЗ-90
1990
6 378 136
1/298,257839303

В настоящее время параметры современной точности имеют эллипсоид системы GRS-80 {Geodetic Reference System, 1980), составляющей основу современных координатных систем Австралии, Европы, стран Северной и Центральной Америки, WGS-84 (World Geodetic System, 1984), получивший мировое распространение благодаря американской глобальной системе спутникового позиционирования, и российский ПЗ-90 (Параметры Земли, 1990).
Различают общеземной эллипсоид, наилучшим образом подходящий для решения глобальных картографо-геодезических задач, и референц-эллипсоиды, используемые в отдельных регионах и странах
Положение любой точки на земном эллипсоиде определяется широтой и долготой.
Широта (В) — угол, образованный нормалью к поверхности земного эллипсоида в данной точке и плоскостью его экватора;
долгота (L) двугранный угол между плоскостями меридианов данной точки и начального меридиана (см. рис. 1).
Рассекая эллипсоид плоскостями, проходящими через полярную ось, получают линии меридианов, а плоскостями, проходящими перпендикулярно этой оси, — линии параллелей.
Линия экватораслед сечения эллипсоида плоскостью, проходящей через его центр перпендикулярно полярной оси.
Сетка меридианов и параллелей на земном эллипсоиде, шаре или на глобусе называется географической сеткой.
Легко заметить, что радиус М у полюса больше, чем на экваторе. Это означает, что кривизна меридианного эллипса убывает от экватора к полюсам. Радиус меридиана получает наибольшие изменения на средней широте, где с каждым градусом широты он изменяется примерно на 1 км.



Рис. 1. Эллипсоид вращения (В, L — широта и долгота точки Q;
L0начальный меридиан)

 По табл. 1 нетрудно проследить, как со временем повышалась точность определения большой полуоси и сжатия земного эллипсоида.
Таблица 1 Основные земные эллипсоиды и их параметры

Эллипсоид
Годы
Большая полуось а (м)
Сжатие а
Деламбра
1800
6 375 653
1/334
Вальбека
1819
6 376 896
1/303


Эйри
1830
6 377 563,396
1/299,3249646
нереста
1830
6 377 276,345
1/300,8017
Бесселя
1841
6 377 397
1/299,15
Кларка
1866
6 378 206
1/294,98
Кларка
1880
6 378 249
1/293,46
Хейфорда
1909
6 378 388
1/297
Красовского
1940
6 378 245
1/298,3
Австралийский
1965
6 378 160      _j
1/298,25
GRS-67
1967
6 378 160
1/298.247167247
WGS-72
1972
6 378 135
1/298,26
GRS-80
1979
6 378 137
1/298,257222101
WGS-84
1984
6 378 137
1/298,257223563
ПЗ-90
1990
6 378 136
1/298,257839303

В настоящее время параметры современной точности имеют эллипсоид системы GRS-80 {Geodetic Reference System, 1980), составляющей основу современных координатных систем Австралии, Европы, стран Северной и Центральной Америки, WGS-84 (World Geodetic System, 1984), получивший мировое распространение благодаря американской глобальной системе спутникового позиционирования, и российский ПЗ-90 (Параметры Земли, 1990).
Различают общеземной эллипсоид, наилучшим образом подходящий для решения глобальных картографо-геодезических задач, и референц-эллипсоиды, используемые в отдельных регионах и странах
Положение любой точки на земном эллипсоиде определяется широтой и долготой.
Широта (В) — угол, образованный нормалью к поверхности земного эллипсоида в данной точке и плоскостью его экватора;
долгота (L) двугранный угол между плоскостями меридианов данной точки и начального меридиана (см. рис. 1).
Рассекая эллипсоид плоскостями, проходящими через полярную ось, получают линии меридианов, а плоскостями, проходящими перпендикулярно этой оси, — линии параллелей.
Линия экватораслед сечения эллипсоида плоскостью, проходящей через его центр перпендикулярно полярной оси.
Сетка меридианов и параллелей на земном эллипсоиде, шаре или на глобусе называется географической сеткой.
Легко заметить, что радиус М у полюса больше, чем на экваторе. Это означает, что кривизна меридианного эллипса убывает от экватора к полюсам. Радиус меридиана получает наибольшие изменения на средней широте, где с каждым градусом широты он изменяется примерно на 1 км.

Комментарии

Популярные сообщения из этого блога